Search results for "Gravitational collapse"

showing 10 items of 34 documents

H-2, H-3(+) and the age of molecular clouds and prestellar cores

2012

Measuring the age of molecular clouds and prestellar cores is a difficult task that has not yet been successfully accomplished although the information is of paramount importance to help in understanding and discriminating between different formation scenarios. Most chemical clocks suffer from unknown initial conditions and are therefore difficult to use. We propose a new approach based on a subset of deuterium chemistry that takes place in the gas phase and for which initial conditions are relatively well known. It relies primarily on the conversion of H 3 + into H 2D + to initiate deuterium enrichment of the molecular gas. This conversion is controlled by the ortho/para ratio of H2 that i…

AstrochemistryAbundance (chemistry)General MathematicsGeneral Physics and AstronomySULFUR CHEMISTRYAstrophysicsINITIAL CONDITIONS01 natural sciences7. Clean energySTAR-FORMATION0103 physical sciencesGravitational collapseProtostar010306 general physics010303 astronomy & astrophysicsAMBIPOLAR DIFFUSIONCOSMIC-RAY IONIZATION[PHYS]Physics [physics]INTERSTELLAR-MEDIUMStar formationMolecular cloudTRIPLY DEUTERATED AMMONIAGeneral EngineeringORTHO-PARA TRANSITIONSInterstellar mediumDARK CLOUDSGRAVITATIONAL COLLAPSEDeuterium13. Climate action[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Stellar hydrodynamics with glaister's riemann solver: An approach to the stellar collapse

1990

La resolution de Remann approximee de la solution des equations d'Euler de la dynamique des gaz 1 D, developpee par Glaister P. (1988, J. Comput. Phys., 74) est introduite dans un code hydrodynamique lagrangien et appliquee a l'effondrement stellaire a symetrie spherique

Cauchy problemPhysicsNumerical AnalysisPhysics and Astronomy (miscellaneous)Applied MathematicsWhite dwarfGas dynamicsRiemann solverComputer Science ApplicationsComputational MathematicsSupernovasymbols.namesakeClassical mechanicsModeling and SimulationGravitational collapsesymbolsCircular symmetryStellar evolutionJournal of Computational Physics
researchProduct

Universal thermodynamic properties of the intracluster medium over two decades in radius in the X-COP sample

2018

The hot plasma in galaxy clusters is expected to be heated to high temperatures through shocks and adiabatic compression. The thermodynamical properties of the gas encode information on the processes leading to the thermalization of the gas in the cluster's potential well as well as non-gravitational processes such as gas cooling, AGN feedback and kinetic energy. In this work we present the radial profiles of the thermodynamic properties of the intracluster medium (ICM) out to the virial radius for a sample of 12 galaxy clusters selected from the Planck all-sky survey. We determine the universal profiles of gas density, temperature, pressure, and entropy over more than two decades in radius…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)galaxies: clusters: intracluster mediumDark matterPopulationFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesdark matterVirial theoremsymbols.namesakeIntracluster medium0103 physical sciencesGravitational collapsePlanckAdiabatic processeducation010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsGalaxy clusterPhysicseducation.field_of_study[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Settore FIS/05010308 nuclear & particles physicsThermodynamical quantitiesAstronomy and AstrophysicsX-rays: galaxies: clusters; dark matter; galaxies: clusters: intracluster medium; galaxies: clusters: general; Thermodynamical quantitiesgalaxies: clusters: general13. Climate actionSpace and Planetary ScienceX-rays: galaxies: clustersastro-ph.COsymbols[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic AstrophysicsAstronomy & Astrophysics
researchProduct

Dark gamma-ray bursts

2016

Many theories of dark matter (DM) predict that DM particles can be captured by stars via scattering on ordinary matter. They subsequently condense into a DM core close to the center of the star and eventually annihilate. In this work, we trace DM capture and annihilation rates throughout the life of a massive star and show that this evolution culminates in an intense annihilation burst coincident with the death of the star in a core collapse supernova. The reason is that, along with the stellar interior, also its DM core heats up and contracts, so that the DM density increases rapidly during the final stages of stellar evolution. We argue that, counterintuitively, the annihilation burst is …

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAnnihilation010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesAstronomyAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsType II supernova01 natural sciencesHigh Energy Physics - PhenomenologySupernovaHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesGravitational collapseAstrophysics::Solar and Stellar AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaGamma-ray burst010303 astronomy & astrophysicsLight dark matterStellar evolutionAstrophysics::Galaxy AstrophysicsPhysical Review D
researchProduct

Core collapse with magnetic fields and rotation

2018

We study the effects of magnetic fields and rotation on the core collapse of a star of an initial mass of M = 20 solar masses using axisymmetric simulations coupling special relativistic magnetohydrodynamics, an approximately relativistic gravitational potential, and spectral neutrino transport. We compare models of the same core with different, artificially added profiles of rotation and magnetic field. A model with weak field and slow rotation does not produce an explosion, while stronger fields and fast rotation open the possibility of explosions. Whereas the neutrino luminosities of the exploding models are the same as or even less than those of the non-exploding model, magnetic fields …

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsNuclear and High Energy PhysicsField (physics)010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesRotation01 natural sciences7. Clean energyInstabilityMagnetic fieldComputational physicsGravitational potentialAstrophysics - Solar and Stellar Astrophysics0103 physical sciencesGravitational collapseMagnetohydrodynamicsNeutrinoAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Journal of Physics G: Nuclear and Particle Physics
researchProduct

Implementation of a simplified approach to radiative transfer in general relativity

2013

We describe in detail the implementation of a simplified approach to radiative transfer in general relativity by means of the well-known neutrino leakage scheme (NLS). In particular, we carry out an extensive investigation of the properties and limitations of the NLS for isolated relativistic stars to a level of detail that has not been discussed before in a general-relativistic context. Although the numerous tests considered here are rather idealized, they provide a well-controlled environment in which to understand the relationship between the matter dynamics and the neutrino emission, which is important in order to model the neutrino signals from more complicated scenarios, such as binar…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsNuclear and High Energy PhysicsGeneral relativityAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesPerturbation (astronomy)General Relativity and Quantum Cosmology (gr-qc)MechanicsGeneral Relativity and Quantum CosmologyNeutron starNumerical relativityStarsClassical mechanicsGravitational collapseRadiative transferNeutrinoAstrophysics - High Energy Astrophysical PhenomenaPhysical Review D
researchProduct

Search for Core-Collapse Supernovae using the MiniBooNE Neutrino Detector

2009

We present a search for core-collapse supernovae in the Milky Way galaxy, using the MiniBooNE neutrino detector. No evidence is found for core-collapse supernovae occurring in our Galaxy in the period from December 14, 2004 to July 31, 2008, corresponding to 98% live time for collection. We set a limit on the core-collapse supernova rate out to a distance of 13.4 kpc to be less than 0.69 supernovae per year at 90% C. L.

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsNuclear and High Energy PhysicsResearch Groups and Centres\Physics\Low Temperature PhysicsFaculty of Science\PhysicsMilky WayAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomyAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGalaxyMiniBooNESupernovaNeutrino detectorGravitational collapseHigh Energy Physics::ExperimentVariable starNeutrinoAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy Astrophysics
researchProduct

Nonlinear dynamics of spinning bosonic stars: formation and stability

2019

We perform numerical evolutions of the fully non-linear Einstein-(complex, massive)Klein-Gordon and Einstein-(complex)Proca systems, to assess the formation and stability of spinning bosonic stars. In the scalar/vector case these are known as boson/Proca stars. Firstly, we consider the formation scenario. Starting with constraint-obeying initial data, describing a dilute, axisymmetric cloud of spinning scalar/Proca field, gravitational collapse towards a spinning star occurs, via gravitational cooling. In the scalar case the formation is transient, even for a non-perturbed initial cloud; a non-axisymmetric instability always develops ejecting all the angular momentum from the scalar star. I…

High Energy Physics - TheoryAngular momentumFOS: Physical sciencesGeneral Physics and AstronomyPerturbation (astronomy)General Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesInstabilityGeneral Relativity and Quantum CosmologyGravitationsymbols.namesakeGeneral Relativity and Quantum Cosmology0103 physical sciencesGravitational collapseAstrophysics::Solar and Stellar AstrophysicsEinstein010306 general physicsAstrophysics::Galaxy AstrophysicsBosonHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsBoson starsStarsClassical mechanicsHigh Energy Physics - Theory (hep-th)symbolsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaStability
researchProduct

Lensing and dynamics of ultracompact bosonic stars

2017

Spherically symmetric bosonic stars are one of the few examples of gravitating solitons that are known to form dynamically, via a classical process of (incomplete) gravitational collapse. As stationary solutions of the Einstein--Klein-Gordon or the Einstein--Proca theory, bosonic stars may also become sufficiently compact to develop light rings and hence mimic, in principle, gravitational-wave observational signatures of black holes (BHs). In this paper, we discuss how these horizonless ultra-compact objects (UCOs) are actually distinct from BHs, both phenomenologically and dynamically. In the electromagnetic channel, the light ring associated phenomenology reveals remarkable lensing patter…

High Energy Physics - TheoryHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsEinstein ring010308 nuclear & particles physicsGravitational waveFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyGravitationGeneral Relativity and Quantum Cosmologysymbols.namesakeStarsHigh Energy Physics - Theory (hep-th)0103 physical sciencesGravitational collapsesymbolsSolitonAstrophysics - High Energy Astrophysical Phenomena010306 general physicsSchwarzschild radiusPhenomenology (particle physics)
researchProduct

An alternative scenario for critical scalar field collapse in $AdS_3$

2016

In the context of gravitational collapse and black hole formation, we reconsider the problem to describe analytically the critical collapse of a massless and minimally coupled scalar field in $2+1$ gravity.

High Energy Physics - TheoryNuclear and High Energy PhysicsGravity (chemistry)Particle physicsBlack HolesCritical phenomenaAstrophysics::High Energy Astrophysical PhenomenaCollapse (topology)FOS: Physical sciencesContext (language use)Critical collapseGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyTheoretical physicsHigh Energy Physics::TheoryGeneral Relativity and Quantum Cosmology0103 physical sciencesGravitational collapse010306 general physicsComputingMilieux_MISCELLANEOUSPhysics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]010308 nuclear & particles physicsMassless particle2+1 gravityHigh Energy Physics - Theory (hep-th)Anti-de Sitter spaceScalar field
researchProduct